3.645 \(\int \frac{1}{(d f+e f x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx\)

Optimal. Leaf size=236 \[ \frac{\sqrt{c} \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 e f^4 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 e f^4 \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b}{a^2 e f^4 (d+e x)}-\frac{1}{3 a e f^4 (d+e x)^3} \]

[Out]

-1/(3*a*e*f^4*(d + e*x)^3) + b/(a^2*e*f^4*(d + e*x)) + (Sqrt[c]*(b + (b^2 - 2*a*
c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a
*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e*f^4) + (Sqrt[c]*(b - (b^2 - 2*
a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4
*a*c]]])/(Sqrt[2]*a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*e*f^4)

_______________________________________________________________________________________

Rubi [A]  time = 1.1997, antiderivative size = 236, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152 \[ \frac{\sqrt{c} \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 e f^4 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 e f^4 \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b}{a^2 e f^4 (d+e x)}-\frac{1}{3 a e f^4 (d+e x)^3} \]

Antiderivative was successfully verified.

[In]  Int[1/((d*f + e*f*x)^4*(a + b*(d + e*x)^2 + c*(d + e*x)^4)),x]

[Out]

-1/(3*a*e*f^4*(d + e*x)^3) + b/(a^2*e*f^4*(d + e*x)) + (Sqrt[c]*(b + (b^2 - 2*a*
c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a
*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e*f^4) + (Sqrt[c]*(b - (b^2 - 2*
a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4
*a*c]]])/(Sqrt[2]*a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*e*f^4)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 115.569, size = 241, normalized size = 1.02 \[ - \frac{1}{3 a e f^{4} \left (d + e x\right )^{3}} + \frac{b}{a^{2} e f^{4} \left (d + e x\right )} - \frac{\sqrt{2} \sqrt{c} \left (- 2 a c + b^{2} - b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} \left (d + e x\right )}{\sqrt{b + \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a^{2} e f^{4} \sqrt{b + \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} + \frac{\sqrt{2} \sqrt{c} \left (- 2 a c + b^{2} + b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} \left (d + e x\right )}{\sqrt{b - \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a^{2} e f^{4} \sqrt{b - \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(e*f*x+d*f)**4/(a+b*(e*x+d)**2+c*(e*x+d)**4),x)

[Out]

-1/(3*a*e*f**4*(d + e*x)**3) + b/(a**2*e*f**4*(d + e*x)) - sqrt(2)*sqrt(c)*(-2*a
*c + b**2 - b*sqrt(-4*a*c + b**2))*atan(sqrt(2)*sqrt(c)*(d + e*x)/sqrt(b + sqrt(
-4*a*c + b**2)))/(2*a**2*e*f**4*sqrt(b + sqrt(-4*a*c + b**2))*sqrt(-4*a*c + b**2
)) + sqrt(2)*sqrt(c)*(-2*a*c + b**2 + b*sqrt(-4*a*c + b**2))*atan(sqrt(2)*sqrt(c
)*(d + e*x)/sqrt(b - sqrt(-4*a*c + b**2)))/(2*a**2*e*f**4*sqrt(b - sqrt(-4*a*c +
 b**2))*sqrt(-4*a*c + b**2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.372991, size = 238, normalized size = 1.01 \[ \frac{\frac{3 \sqrt{2} \sqrt{c} \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \sqrt{c} \left (b \sqrt{b^2-4 a c}+2 a c-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{2 a}{(d+e x)^3}+\frac{6 b}{d+e x}}{6 a^2 e f^4} \]

Antiderivative was successfully verified.

[In]  Integrate[1/((d*f + e*f*x)^4*(a + b*(d + e*x)^2 + c*(d + e*x)^4)),x]

[Out]

((-2*a)/(d + e*x)^3 + (6*b)/(d + e*x) + (3*Sqrt[2]*Sqrt[c]*(b^2 - 2*a*c + b*Sqrt
[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/
(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[2]*Sqrt[c]*(-b^2 + 2*a
*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 -
 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(6*a^2*e*f^4)

_______________________________________________________________________________________

Maple [C]  time = 0.007, size = 197, normalized size = 0.8 \[{\frac{1}{2\,{f}^{4}{a}^{2}e}\sum _{{\it \_R}={\it RootOf} \left ( c{e}^{4}{{\it \_Z}}^{4}+4\,cd{e}^{3}{{\it \_Z}}^{3}+ \left ( 6\,c{d}^{2}{e}^{2}+b{e}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,c{d}^{3}e+2\,bde \right ){\it \_Z}+c{d}^{4}+b{d}^{2}+a \right ) }{\frac{ \left ({{\it \_R}}^{2}bc{e}^{2}+2\,{\it \_R}\,bcde+bc{d}^{2}-ac+{b}^{2} \right ) \ln \left ( x-{\it \_R} \right ) }{2\,c{e}^{3}{{\it \_R}}^{3}+6\,cd{e}^{2}{{\it \_R}}^{2}+6\,{\it \_R}\,c{d}^{2}e+2\,c{d}^{3}+be{\it \_R}+bd}}}-{\frac{1}{3\,ae{f}^{4} \left ( ex+d \right ) ^{3}}}+{\frac{b}{{f}^{4}{a}^{2}e \left ( ex+d \right ) }} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4),x)

[Out]

1/2/f^4/a^2/e*sum((_R^2*b*c*e^2+2*_R*b*c*d*e+b*c*d^2-a*c+b^2)/(2*_R^3*c*e^3+6*_R
^2*c*d*e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*
e^3*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+c*d^4+b*d^2+a))-1/3/a/e
/f^4/(e*x+d)^3+b/a^2/e/f^4/(e*x+d)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \frac{3 \, b e^{2} x^{2} + 6 \, b d e x + 3 \, b d^{2} - a}{3 \,{\left (a^{2} e^{4} f^{4} x^{3} + 3 \, a^{2} d e^{3} f^{4} x^{2} + 3 \, a^{2} d^{2} e^{2} f^{4} x + a^{2} d^{3} e f^{4}\right )}} + \frac{\int \frac{b c e^{2} x^{2} + 2 \, b c d e x + b c d^{2} + b^{2} - a c}{c e^{4} x^{4} + 4 \, c d e^{3} x^{3} + c d^{4} +{\left (6 \, c d^{2} + b\right )} e^{2} x^{2} + b d^{2} + 2 \,{\left (2 \, c d^{3} + b d\right )} e x + a}\,{d x}}{a^{2} f^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(((e*x + d)^4*c + (e*x + d)^2*b + a)*(e*f*x + d*f)^4),x, algorithm="maxima")

[Out]

1/3*(3*b*e^2*x^2 + 6*b*d*e*x + 3*b*d^2 - a)/(a^2*e^4*f^4*x^3 + 3*a^2*d*e^3*f^4*x
^2 + 3*a^2*d^2*e^2*f^4*x + a^2*d^3*e*f^4) + integrate((b*c*e^2*x^2 + 2*b*c*d*e*x
 + b*c*d^2 + b^2 - a*c)/(c*e^4*x^4 + 4*c*d*e^3*x^3 + c*d^4 + (6*c*d^2 + b)*e^2*x
^2 + b*d^2 + 2*(2*c*d^3 + b*d)*e*x + a), x)/(a^2*f^4)

_______________________________________________________________________________________

Fricas [A]  time = 0.302659, size = 2986, normalized size = 12.65 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(((e*x + d)^4*c + (e*x + d)^2*b + a)*(e*f*x + d*f)^4),x, algorithm="fricas")

[Out]

1/6*(6*b*e^2*x^2 + 12*b*d*e*x + 6*b*d^2 + 3*sqrt(1/2)*(a^2*e^4*f^4*x^3 + 3*a^2*d
*e^3*f^4*x^2 + 3*a^2*d^2*e^2*f^4*x + a^2*d^3*e*f^4)*sqrt(-((a^5*b^2 - 4*a^6*c)*e
^2*f^8*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*
b^2 - 4*a^11*c)*e^4*f^16)) + b^5 - 5*a*b^3*c + 5*a^2*b*c^2)/((a^5*b^2 - 4*a^6*c)
*e^2*f^8))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x + 2*(b^4*c^3 - 3*a*b^2*c^
4 + a^2*c^5)*d + sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^3*f^12*sqrt
((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^1
1*c)*e^4*f^16)) - (b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4
)*e*f^4)*sqrt(-((a^5*b^2 - 4*a^6*c)*e^2*f^8*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c
^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4*f^16)) + b^5 - 5*a*b^3*
c + 5*a^2*b*c^2)/((a^5*b^2 - 4*a^6*c)*e^2*f^8))) - 3*sqrt(1/2)*(a^2*e^4*f^4*x^3
+ 3*a^2*d*e^3*f^4*x^2 + 3*a^2*d^2*e^2*f^4*x + a^2*d^3*e*f^4)*sqrt(-((a^5*b^2 - 4
*a^6*c)*e^2*f^8*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4
)/((a^10*b^2 - 4*a^11*c)*e^4*f^16)) + b^5 - 5*a*b^3*c + 5*a^2*b*c^2)/((a^5*b^2 -
 4*a^6*c)*e^2*f^8))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x + 2*(b^4*c^3 - 3
*a*b^2*c^4 + a^2*c^5)*d - sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^3*
f^12*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^
2 - 4*a^11*c)*e^4*f^16)) - (b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 +
4*a^4*c^4)*e*f^4)*sqrt(-((a^5*b^2 - 4*a^6*c)*e^2*f^8*sqrt((b^8 - 6*a*b^6*c + 11*
a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4*f^16)) + b^5 -
 5*a*b^3*c + 5*a^2*b*c^2)/((a^5*b^2 - 4*a^6*c)*e^2*f^8))) - 3*sqrt(1/2)*(a^2*e^4
*f^4*x^3 + 3*a^2*d*e^3*f^4*x^2 + 3*a^2*d^2*e^2*f^4*x + a^2*d^3*e*f^4)*sqrt(((a^5
*b^2 - 4*a^6*c)*e^2*f^8*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 +
 a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4*f^16)) - b^5 + 5*a*b^3*c - 5*a^2*b*c^2)/((a
^5*b^2 - 4*a^6*c)*e^2*f^8))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x + 2*(b^4
*c^3 - 3*a*b^2*c^4 + a^2*c^5)*d + sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c
^2)*e^3*f^12*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(
(a^10*b^2 - 4*a^11*c)*e^4*f^16)) + (b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^
2*c^3 + 4*a^4*c^4)*e*f^4)*sqrt(((a^5*b^2 - 4*a^6*c)*e^2*f^8*sqrt((b^8 - 6*a*b^6*
c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4*f^16))
- b^5 + 5*a*b^3*c - 5*a^2*b*c^2)/((a^5*b^2 - 4*a^6*c)*e^2*f^8))) + 3*sqrt(1/2)*(
a^2*e^4*f^4*x^3 + 3*a^2*d*e^3*f^4*x^2 + 3*a^2*d^2*e^2*f^4*x + a^2*d^3*e*f^4)*sqr
t(((a^5*b^2 - 4*a^6*c)*e^2*f^8*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^
2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4*f^16)) - b^5 + 5*a*b^3*c - 5*a^2*b*c
^2)/((a^5*b^2 - 4*a^6*c)*e^2*f^8))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x +
 2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*d - sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*
a^7*b*c^2)*e^3*f^12*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4
*c^4)/((a^10*b^2 - 4*a^11*c)*e^4*f^16)) + (b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17
*a^3*b^2*c^3 + 4*a^4*c^4)*e*f^4)*sqrt(((a^5*b^2 - 4*a^6*c)*e^2*f^8*sqrt((b^8 - 6
*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4*
f^16)) - b^5 + 5*a*b^3*c - 5*a^2*b*c^2)/((a^5*b^2 - 4*a^6*c)*e^2*f^8))) - 2*a)/(
a^2*e^4*f^4*x^3 + 3*a^2*d*e^3*f^4*x^2 + 3*a^2*d^2*e^2*f^4*x + a^2*d^3*e*f^4)

_______________________________________________________________________________________

Sympy [A]  time = 56.729, size = 411, normalized size = 1.74 \[ \frac{- a + 3 b d^{2} + 6 b d e x + 3 b e^{2} x^{2}}{3 a^{2} d^{3} e f^{4} + 9 a^{2} d^{2} e^{2} f^{4} x + 9 a^{2} d e^{3} f^{4} x^{2} + 3 a^{2} e^{4} f^{4} x^{3}} + \operatorname{RootSum}{\left (t^{4} \left (256 a^{7} c^{2} e^{4} f^{16} - 128 a^{6} b^{2} c e^{4} f^{16} + 16 a^{5} b^{4} e^{4} f^{16}\right ) + t^{2} \left (- 80 a^{3} b c^{3} e^{2} f^{8} + 100 a^{2} b^{3} c^{2} e^{2} f^{8} - 36 a b^{5} c e^{2} f^{8} + 4 b^{7} e^{2} f^{8}\right ) + c^{5}, \left ( t \mapsto t \log{\left (x + \frac{- 96 t^{3} a^{7} b c^{2} e^{3} f^{12} + 56 t^{3} a^{6} b^{3} c e^{3} f^{12} - 8 t^{3} a^{5} b^{5} e^{3} f^{12} - 4 t a^{4} c^{4} e f^{4} + 32 t a^{3} b^{2} c^{3} e f^{4} - 40 t a^{2} b^{4} c^{2} e f^{4} + 16 t a b^{6} c e f^{4} - 2 t b^{8} e f^{4} + a^{2} c^{5} d - 3 a b^{2} c^{4} d + b^{4} c^{3} d}{a^{2} c^{5} e - 3 a b^{2} c^{4} e + b^{4} c^{3} e} \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(e*f*x+d*f)**4/(a+b*(e*x+d)**2+c*(e*x+d)**4),x)

[Out]

(-a + 3*b*d**2 + 6*b*d*e*x + 3*b*e**2*x**2)/(3*a**2*d**3*e*f**4 + 9*a**2*d**2*e*
*2*f**4*x + 9*a**2*d*e**3*f**4*x**2 + 3*a**2*e**4*f**4*x**3) + RootSum(_t**4*(25
6*a**7*c**2*e**4*f**16 - 128*a**6*b**2*c*e**4*f**16 + 16*a**5*b**4*e**4*f**16) +
 _t**2*(-80*a**3*b*c**3*e**2*f**8 + 100*a**2*b**3*c**2*e**2*f**8 - 36*a*b**5*c*e
**2*f**8 + 4*b**7*e**2*f**8) + c**5, Lambda(_t, _t*log(x + (-96*_t**3*a**7*b*c**
2*e**3*f**12 + 56*_t**3*a**6*b**3*c*e**3*f**12 - 8*_t**3*a**5*b**5*e**3*f**12 -
4*_t*a**4*c**4*e*f**4 + 32*_t*a**3*b**2*c**3*e*f**4 - 40*_t*a**2*b**4*c**2*e*f**
4 + 16*_t*a*b**6*c*e*f**4 - 2*_t*b**8*e*f**4 + a**2*c**5*d - 3*a*b**2*c**4*d + b
**4*c**3*d)/(a**2*c**5*e - 3*a*b**2*c**4*e + b**4*c**3*e))))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{{\left ({\left (e x + d\right )}^{4} c +{\left (e x + d\right )}^{2} b + a\right )}{\left (e f x + d f\right )}^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(((e*x + d)^4*c + (e*x + d)^2*b + a)*(e*f*x + d*f)^4),x, algorithm="giac")

[Out]

integrate(1/(((e*x + d)^4*c + (e*x + d)^2*b + a)*(e*f*x + d*f)^4), x)